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Tools for Energy Model Optimization  
and Analysis (Temoa) 

Goals 
 
Repeatable Analysis 
• Data and code stored in a publicly accessible web repository 

(github.com) 
• Open source software stack 
Rigorous treatment of uncertainty 
• Framework designed to operate in a high performance computing 

environment 
• Capability to do stochastic optimization; modeling-to-generate 

alternatives  
Flexibility 
• Programming environment with links to linear, mixed integer, and 

non-linear solvers 
• Draws on rich existing open source ecosystem 
 
For more information: http://www.temoaproject.org 
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What is TEMOA? 

TEMOA is a bottom up, technology explicit model with 
perfect foresight, similar to the TIMES model generator. 

 

Features 

• Minimizes the present cost of energy supply 

• Flexible time slicing by season and time-of-day 

• Variable length model time periods 

• Technology vintaging 

• Separate technology loan periods and lifetimes 

• Optional technology-specific discount rates 
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Stochastic Optimization 

Decision-makers need to make choices before uncertainty is 
resolved. 
 
Need to make short-term choices that hedge against future risk 
 
→ Sequential decision-making process that allows recourse 
 
Stochastic optimization 
• Build a scenario tree 
• Assign probabilities to future outcomes 
• Optimize over all possibilities 

 
 
The resultant solution represents a near-term hedging strategy 
because it accounts for alternative future outcomes. 
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Simple Example of Stochastic Optimization 

Suppose we have two technologies, A and B. Let x represent the 
installed capacity. 
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Stage 1 Decision Variables: 
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How can we evaluate the 
effectiveness of the 
hedging strategy? 
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Expected Value of Perfect Information (EVPI) 

The expected savings if planners knew with certainty the outcome 
at every stage as opposed to following the hedging strategy: 

 

 

 

 

• Quantifies the cost of uncertainty 

• Provides a measure of how much planners should be willing to 
pay to eliminate that uncertainty 
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But assuming the 
uncertainty is irreducible, 
how can we measure the 

value of our stochastic 
solution? 
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The expected savings by following the hedging strategy 
rather than naively guessing the outcome: 

 

 

 

In the 2-stage case: 

 

 

• Estimates the value of the stochastic solution 

• If the ECIU is close to zero; then we can safely replace 
the stochastic model with a deterministic one 

Expected Cost of Ignoring Uncertainty (ECIU) 
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Case Study 
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‘Temoa Island’ 
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27 technologies 
4 time periods 
6 time slices 



Study Outline 

• Suppose there are parliamentary elections every 4 
years 
– If the green party wins the majority, they implement a 2.3% 

annual CO2 reduction.  

– If the pro-business party wins the majority directly following 
the green party, they allow CO2 to grow at 2.3% annually. If 
they wind a second term in a row, CO2 is unconstrained. 

– Election outcome probabilities weighted evenly at 50% each 

• How do the EVPI and ECIU vary as a function of the 
discount rate and number of uncertain stages? 

• Goal is to begin to explore the limits of stochastic 
optimization – how far should we go? 
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Event Tree Used for Stochastic Optimization 
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ECIU in the 4-stage case 

• Each node is designated by a number 
• The letters at each node represent the remaining 

outcomes that are still possible 
14 



Electricity Generation 
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EVPI and ECIU in the 2-stage case 
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EVPI and ECIU in the 3-stage case 
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EVPI and ECIU in the 4-stage case 
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EVPI and ECIU in 2,3,4-stage cases @ 5% DR 
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Insights 

• Discount rate generally decreases the EVPI and ECIU 

• Discount rate also affects investment patterns and the 
distribution of ECIUs 

• As number of stages increase, variation in ECIU increases; 
however, with a discount rate >0, the variation should approach 
a limit as the number of stages increases. 

• Need to have flexible reference scenarios; easy to generate 
infeasibilities in the ECIU calculation with growth rate constraints 

• EVPI and ECIU are a small fraction of the cost from the stochastic 
solution; need to investigate more 
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Stochastic Model Performance 

 2-stage (includes our "Reporting" variables) 
     5,056 variables (Columns) 
     6,071 constraints (Rows) 
     25,701 non-zeros 
     Time to solution: 6 sec (model gen) + 0.14 sec (CPLEX) = 6.14 sec 

  3-stage 
     17,956 variables (Columns) 
     22,760 constraints (Rows) 
     98,213 non-zeros 
     Time to solution: 17 sec (model gen) + 0.49 sec (CPLEX) = 17.49 sec 

  4-stage 
     53,824 variables (Columns) 
     71,213 constraints (Rows) 
     309,185 nonzeros 
     Time to solution: 56 sec (model gen) + 2.76 sec (CPLEX) = 58.76 sec 21 



ECIU Performance 

 2-stage (includes our "Reporting" variables) 
     Cores Utilized: 2 
     Total Solve Count: 4 
     Time: 5 sec 
 
  3-stage 
     Cores Utilized: 8 
     Total Solve Count: 32 
     Time: 14 sec 
   
4-stage  
     Cores Utilized: 8 
     Total Solve Count: 512 
     Time Per Solve: 318 sec (5.3 min) 
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Across 16 discount rates: 
     Total Solve Number: 548 × 16 = 8768   
     Total Solution Time:  93 min 30 sec 



Next Steps 

Develop a better understanding of how the EVPI and ECIU vary 
under various configurations: 
• discount rates 
• number of stages (add more stages) 
• model complexity 
• choice of stochastic parameters 
• distribution of probabilities 

 

Perform policy-relevant analysis in the US 

 What are the costs and system effects associated with key 
uncertainties? 
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Model Access 

All model source code and data available for viewing 
and download through the project website: 

 

http://temoaproject.org 

 

Also, if you’d like a copy of the paper that describes the 
Temoa formulation, send me an email 
(jdecarolis@ncsu.edu) : 

Hunter K, Sreepathi S, DeCarolis JF, Modeling for Insight Using Tools for 
Energy Model Optimization and Analysis (Temoa). Energy 
Economics (under review). 
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Stochastic optimization with PySP 

Python-based Stochastic Programming (PySP) is part of the 
Common Optimization Python Repository (Coopr) package, 
developed at Sandia National Lab. 
 
To perform stochastic optimization, specify a Pyomo reference model 
and a scenario tree 
 
PySP offers two options: 
1. runef: builds and solves the extensive form of the model.  

“Curse of dimensionality” → memory problems 
2. runph: builds and solves using a scenario-based decomposition 

solver (i.e., “Progressive Hedging) based on Rockafellar and Wets 
(1991). 

        Can be implemented in a compute cluster environment; more 
complex scenario trees possible. 

 
 

 

R.T. Rockafellar and R. J-B. Wets. Scenarios and policy aggregation in optimization under 
uncertainty. Mathematics of Operations Research, pages 119–147, 1991. 

 
27 



Uncertainty Metrics 

Since we need to make decisions in the face of 
uncertainty, we need metrics that allow us to value the 
hedging strategy. 

 

Expected Value of Perfect Information (EVPI): The 
expected savings if the planners knew with certainty 
the outcome at every stage as opposed to following the 
hedging strategy. 

 

Expected Cost of Ignoring Uncertainty (ECIU):  The 
expected savings by following the hedging strategy 
rather than naively guessing the outcome. 
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‘Temoa Island’ 
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• 10 import technologies; 
constant supply prices 

• 54 technologies total; each 
with approximately 9 vintages 

• 6 end-use demands: lighting, 
space heating, space cooling, 
water heating, and light duty 
transportation 

• 6 time slices:  
summer/ winter /intermediate  
day/ night 

• 5 time periods, each 5 years 
long: 2010-2030. 



Temoa Island 2013: Stochastic Model Performance 

 2-stage (includes our "Reporting" variables) 
     21,000 variables (Columns) 
     25,600 constraints (Rows) 
     Time to solution: 30 sec (model gen) + 0.26 sec (CPLEX) = 30.26 sec 
 
  3-stage 
     58,077 variables (Columns) 
     74,933 constraints (Rows) 
     Time to solution: 94 sec (model gen) + 1.44 sec (CPLEX) = 95.44 sec 
 
  4-stage 
     150,001 variables (Columns) 
     200,830 constraints (Rows) 
     Time to solution: 292 sec (model gen) + 4.61 sec (CPLEX) = 296.61 sec 
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Temoa Island 2013: ECIU Performance 

 2-stage (includes our "Reporting" variables) 
     Cores Utilized: 2 
     Total Solve Count: 4 
     Time: 12 sec 
 
  3-stage 
     Cores Utilized: 8 
     Total Solve Count: 32 
     Time: 41 sec 
   
4-stage  
     Cores Utilized: 8 (max) 
     Total Solve Count: 512 
     Time Per Solve: 811 sec (13.51 min) 
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Across 16 discount rates: 
     Total Solve Number: 548 × 16 = 8768   
     Total Solution Time:  4.2 hours 
  
 



Related Outputs 

DeCarolis JF, K Hunter, S Sreepathi (2012). The case for 
repeatable analysis with energy economy optimization 
models. Energy Economics, 34(6): 1845-1853. 

 

Hunter K, S Sreepathi, JF DeCarolis. Modeling for Insight 
with Tools for Energy Model Optimization and Analysis 
(Temoa). Energy Economics (under review). 
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