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Abstract 

We utilize a newly developed framework called Tools for Energy Model Optimization and 

Analysis (Temoa) to perform multi-stage stochastic optimization of a simple energy system. The 

system consists of 27 technologies used to supply primary energy resources, refine petroleum 

products, generate electricity, and serve end use demands. The model considers stochastic crude 

oil and natural gas prices over 4 time periods, resulting in a total of 256 scenarios. Model results 

indicate that future changes in oil price may have a larger effect on system cost than natural gas 

prices, but overall the system configuration requires little recourse as fuel price uncertainty is 

revealed over time. This analysis represents an early step towards our goal of applying stochastic 

optimization in a high performance computing environment to develop robust, near-term hedging 

strategies for energy system management. 

 

 

1. Introduction 

Energy economy optimization (EEO) models provide a structured and self-consistent framework 

that can be used to generate insight related to climate change mitigation and energy system 

planning. Given the expansive system boundaries and necessarily long timeframes for analysis, 

large, irreducible uncertainties preclude precise prediction of future outcomes. A set of 

projections or scenarios produced with EEO models should, to the degree possible, account for 

the underlying uncertainty. The sage advice that modelers should focus on generating robust 

insights rather than point estimates is not new (e.g., Huntington et al., 1982; Peace and Weyant, 

2008; Craig et al., 2002), though it has often gone unheeded. There is growing recognition that 

uncertainty analysis is a key area for in-depth investigation (Haurie et al., 2012). 

Parameter uncertainty is usually addressed in analyses with energy and integrated 

assessment models by running a few scenarios (e.g., EIA, 2009; Clarke et al., 2007; 

Nakicenovic, 2000). The scenarios are often highly detailed, owing to the wide range of model 

input assumptions that can be affected, from high level economic and demographic trends that 

drive energy demand to the assumed performance of new technologies. While the purpose of 

scenario analysis is to extend our thinking about how the future might unfold, a few scenarios, 



2 

 

each with a high degree of detail, can actually have the opposite effect by creating cognitively 

compelling storylines that obscure other equally plausible alternatives and betray the true 

underlying uncertainty (Morgan and Keith, 2008). In addition, if scenarios are not mutually 

exclusive and exhaustive and are not assigned subjective probabilities, they are of limited benefit 

to decision makers who must take action before uncertainty is resolved. 

 Stochastic optimization embeds the probability of different outcomes within the model 

formulation via specification of an event tree (Loulou and Lehtila, 2007), which yields a hedging 

strategy that accounts for future uncertainties. The complexity of event trees is often limited by 

the computational difficulty in solving the extensive form of the problem specification with 

classical solution methods. For example, Kanudia et al. (1998) implemented 8 scenarios across 3 

time stages, Loulou et al. (1999) implemented 4 scenarios across 2 time stages, Labriet et al. 

(2008) implemented 8 scenarios across 2 time stages, Bosetti and Tavoni (2009) implemented 3 

scenarios across two stages, and Babonneau et al. (2012) implemented 4 scenarios across two 

stages. 

 In this paper, we utilize Tools for Energy Model Optimization and Analysis (Temoa) to 

perform multi-stage stochastic optimization of a simple energy system. Temoa was initiated in 

2010 to meet two critical goals: develop a set of open source models and datasets, which will be 

archived online with free access for all interested parties; and design a modeling framework for 

rigorous uncertainty analysis. At the heart of the Temoa framework is a newly created 

technology explicit EEO model. The surrounding computational framework was designed from 

the beginning to support rigorous uncertainty analysis by linking an EEO model created in an 

algebraic modeling environment with high performance computing resources. We demonstrate 

the capability of the Temoa framework by applying stochastic optimization to a simple energy 

system. The rest of the paper is organized as follows: Section 2 provides a brief overview of the 

Temoa framework, Section 3 describes a test energy system representation and provides results 

for the base case, Section 4 describes the setup of the stochastic optimization, Section 5 presents 

the results from the stochastic optimization, and Section 6 draws conclusions. 

 

  



3 

 

2. The Temoa framework 

The TEMOA model is technology explicit, and the algebraic formulation is strongly influenced 

by the TIMES model generator (Loulou et al., 2005). The energy system is described 

algebraically as a network of linked processes that convert a raw energy commodity (e.g., coal, 

oil, biomass, uranium) into an end-use demand (e.g., lighting, transport, water heating, 

conditioned air), often through a series of one or more intermediate commodities (e.g., 

electricity, gasoline, ethanol). Each technology has a set of engineering, economic, and 

environmental characteristics (e.g., capital cost, efficiency, capacity factor, emissions rate) 

associated with converting an energy commodity from one form to another. Technologies are 

linked to one another via model constraints representing the allowable flow of energy 

commodities. The model objective is to minimize the present cost of energy supply by deploying 

and utilizing energy technologies and commodities over time to meet end-use demands. The 

model formulation includes the following features: Flexible time slicing by season and time-of-

day; variable length model time periods; technology vintaging; separate technology loan periods 

and lifetimes; global and technology-specific discount rates; and commodity flows balanced at 

the timeslice level.  

The Temoa model is implemented in Python Optimization Modeling Objects (Pyomo) 

package developed at Sandia National Laboratory, which is built in the Python scripting 

language and strongly influenced by the design of AMPL (Hart, 2009). Pyomo is part of a larger 

package called COmmon Optimization Python Repository (Coopr), which contains Python-based 

Stochastic Programming (PySP), a modeling and solver library for generic stochastic 

programming. To utilize PySP, modelers need to provide two files: the serial (non-stochastic) 

version of the model and a text file defining the subjective probabilities and parameter values 

associated with each branch in the event tree. PySP can solve the extensive form of the stochastic 

model by creating and solving a single representation of the entire system. Solving the extensive 

form; however, quickly leads to problem size limitations dictated by the amount of physical 

memory. To help alleviate the memory requirements, PySP includes an implementation of 

progressive hedging (PH), a solution technique that employs a horizontal decomposition method 

to solve stochastic problems (Rockafellar and Wets, 1991). It decomposes a stochastic program 

by scenarios (i.e., pathways through the event tree) instead of time stages. PH calculates 
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scenario-specific solutions and proceeds in an iterative manner by updating the scenario-specific 

solutions for a modified objective, combines them to form a unified solution, and repeats the 

process until convergence is reached (Watson et al. 2008). PH possesses theoretical convergence 

properties in the case of continuous decision variables and can be also used as an effective 

heuristic in model formulations that include discrete decision variables (Watson et al. 2008). The 

scenario-specific solutions required at each iteration can be evaluated in parallel on a compute 

cluster. 

 

3. Test case description and base case results 

In order to test the functionality of the Temoa framework, we have chosen to model a simple test 

system developed for this purpose, which we call Temoa_Island. The system map is presented 

below in Figure 1. For simplicity, Temoa_Island contains no pre-existing capacity. 

 

 
Figure 1 — Representation of Temoa_Island, a simple energy system created for testing purposes. 

Commodities are represented as blue circles, and processes are represented as green boxes.  The 

abbreviation ‘imp’ indicates import, ‘dom’ indicates a domestic resource, ‘e’ represents an electric 

generator, and ‘p’ represents a process. Select demand technologies and end-use demands are represented 

in the residential (‘r’) and light duty transportation (‘tl’) sectors. In addition, ‘ngcc’ refers to natural gas 

combine-cycle, and ‘ngsc’ to natural gas simple-cycle. 
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The model time horizon spans 2010 to 2035 in 5-year increments. Six annual time slices are 

included (the number in parentheses represents fraction of the year): summer-day (0.125), 

summer-night (0.125), winter-day (0.125), winter-night (0.125), intermediate-day (0.25), and 

intermediate-night (0.25). Total residential and light duty transportation demand is 0.63 Quads in 

2010, growing to 0.83 Quads in 2035. Annual growth in residential lighting, space heating and 

cooling, and water heating demand is 0.86%, which is based on the annual growth in U.S. 

residential primary energy demand from 2001 – 2010 (EIA, 2011). Likewise, annual growth in 

light duty transportation demand of 0.002% is based on the growth rate in U.S. transportation 

petroleum demand from 2001 – 2010 (EIA, 2011). The estimated commodity prices as well as 

technology cost and efficiency estimates are derived from U.S. data sources: Commodity prices 

are drawn from EIA (2012), energy generation data is taken from EIA (2010), and demand 

technology from EPA (2008). The base case produces the results shown in Figures 2 and 3. 

 
Figure 2 — Installed electric generation capacity in the Temoa_Island base case. There is no pre-existing 

capacity in the system, and e_hydro is limited to 1 GW each model time period. 
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Figure 3 — Installed demand technologies in the Temoa_Island base case. Note that the output units for 

all demand technologies are PJ/yr, with the exception of light duty transport, which is in billions of 

vehicle-miles traveled/yr. 

 

As noted above, there is no pre-existing capacity in the system. Figure 2 indicates that electricity 

demand is met with hydroelectricity (e_hydro), coal-fired power (e_coal), combined-cycle gas 

turbine (e_gtcc), and simple-cycle gas turbine (e_gtsc) capacity. A shown in Figure 3, light duty 

transportation demand (tl_distance) is met exclusively with gasoline vehicles (tl_gascar); space 

heating (r_heating) with natural gas furnace (r_furnace); space cooling (r_cooling) with central 

air conditioning (r_ac); lighting demand with compact fluorescent lights (r_cfl); and hot water 

demand is met with solar hot water heaters (r_swheater). All model source code, data, and results 

used in this analysis are archived online at http://temoaproject.org. 

 

4. Stochastic problem formulation 

PySP is used to perform a stochastic optimization of the Temoa_Island system described in 

Section 3. The stochastic model run incorporates uncertainty in two parameters: natural gas price 

and crude oil price. At each stochastic stage (2020, 2025, 2030, 2035), both the crude oil and 

natural gas prices can increase or decrease, leading to 4 branches per node as shown in Figure 4. 

Results from the non-anticipative periods (2010, 2015) constitute a hedging strategy, which 
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provides a single course of action based in part on the expected value of later, uncertain time 

stages.  

 

 
Figure 4 — Event tree showing the resolution of natural gas and crude oil price uncertainty beginning in 

2020. Since there are 4 time periods with modeled uncertainty and each node has 4 branches, there are a 

total of 256 (4
4
) scenarios. The up arrow (↑) indicates a price increase and the down arrow (↓) represents a 

price decrease. 

 

Annual fuel price data from 1968 to 2010 drawn from EIA (2011) were used to calculate branch-

specific probabilities and growth rates. Each joint observation of year-to-year change in natural 

gas and crude oil price in the historical record is categorized according to the branches in Figure 

4. The subjective probability for each branch is calculated by dividing the number of historical 

observations in each category by the total number of observations in the record. For simplicity, 

the branch-specific probabilities are not updated from one model time period to the next, but 

instead remain constant through time. The growth rates for both stochastic parameters are 

determined by the average historical growth rate in each category. Table 1 below provides the 

growth rates and probabilities used in the model. 

 

Table 1 – Subjective probabilities and parameter-specific growth rates for each possible outcome 

Category Subjective 

Probability (%) 

Parameter Growth Rate 

Natural Gas ↑,  Oil ↑ 38.10 
Natural Gas 0.075 

Crude Oil 0.25 

Natural Gas ↑,  Oil ↓ 19.05 
Natural Gas 0.088 

Crude Oil -0.095 

Natural Gas ↓,  Oil ↑ 19.05 
Natural Gas -0.050 

Crude Oil 0.17 

Natural Gas ↓,  Oil ↓ 23.81 
Natural Gas -0.060 

Crude Oil -0.18 

 

In order to solve the stochastic form of the model with PySP, it is necessary to specify the 

baseline version of the Temoa model and the event tree information provided in Table 1 above. 

2010 2015

2020

Natural Gas ↑,  Oil ↑

Natural Gas ↓,  Oil ↑

Natural Gas ↑,  Oil ↓

Natural Gas ↓,  Oil ↓
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During the non-anticipative stages, fuel prices remain constant at current market values and 

demand increases at the business-as-usual rate of 0.86%. The result is a hedging strategy for the 

non-anticipative stages (2010, 2015) with recourse actions beginning in 2020 as uncertainty is 

resolved. 

 

5. Results 

The stochastic run of Temoa_Island with 256 scenarios was conducted on a single node of 

Cygnus, an 11 node, 88-core compute cluster located at NC State University. The model 

consisted of 2,985,047 constraints and 2,169,015 decision variables and was solved using 

CPLEX. The CPLEX pre-solver reduced the number of constraints and variables to 636,264 and 

355,032, respectively. The model took 7 hours, 42 minutes to solve and required approximately 

4.5 gigabytes of memory. 

The effect of stochastic fuel prices on total system cost is shown below in Figure 5. The 

figures show the price of natural gas and crude oil in 2035, the last model time period. The 

vertical spread in total cost when plotted versus natural gas price (left panel) is due to the effect 

of oil prices, which are varying at the same time as natural gas prices. The right panel suggests a 

strong correlation between crude oil price and total system cost. For example, it is possible to 

have a low system cost with a high natural gas price in 2035, but not a low system cost with a 

high crude oil price in 2035. 
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Figure 5 – The effect of stochastic natural gas prices (left) and crude oil prices (right) on the objective 

function value, which represents the total discounted system cost to supply energy. The results suggest 

that crude oil price has a larger effect on total system cost than natural gas price. Note the suppressed zero 

in both plots. 

 

Figure 6 below provides capacity results from the two most extreme scenarios: fuel prices 

rise monotonically from 2020 to 2035 (top row), and fuel prices decrease monotonically from 

2020 to 2035 (bottom row). 
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Figure 6 – Installed electricity capacity (left column) and demand technology capacity (right column) in 

both the lowest cost scenario in which natural gas and crude oil prices decrease monotonically (top row) 

and the highest cost scenario in which natural gas and crude oil costs increase monotonically (bottom 

row). 

 

The results shown in Figure 6 demonstrate that the simple modeled system is relatively robust 

with regard to future uncertainty in crude oil and natural gas prices. In the non-anticipative stages 

(2010 and 2015), the stochastic optimization yields a unified hedging strategy. In the first 

decade, the model chooses to build coal, hydroelectric, and combined-cycle natural gas capacity 

in order to meet electric demand. In the scenario where natural gas prices decrease 

monotonically over time beginning in 2020, the model chooses to meet growing demand with 

simple-cycle natural gas turbines, which are less efficient but have a lower capital cost compared 

to combined-cycle. The results for demand technologies show little change across the two 

scenarios, suggesting that the technology options selected in the base case are robust to changes 

in fuel price. In the high fuel price scenario, the modest deployment of ethanol-power cars in 
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2035 (0.4 billion vehicle miles) suggests that the model is close to a tipping point that could 

favor ethanol over gasoline. 

 

6. Discussion 

Uncertainty analysis with EEO models is often limited or cursory, in part because it is an 

afterthought in the model development and application process. Temoa represents an open 

source EEO modeling framework specifically designed to conduct rigorous uncertainty analysis 

in a high performance computing environment. Unlike previous efforts to apply stochastic 

optimization in a limited way to existing, complex EEO models, this paper exercises the Temoa 

framework by solving a stochastic version of a simple energy system, which serves as a tractable 

computational testbed. Despite the simplicity of the Temoa_Island system tested here, the 

introduction of two stochastic parameters over 4 model time stages resulted in a stochastic 

formulation with 256 scenarios and over 350,000 decision variables. The model took roughly 7.5 

hours to solve using CPLEX and required approximately 4.5 gigabytes of memory.  

The results indicate that the total system cost is more sensitive to the oil price than to 

natural gas price as shown in Figure 5. This is due largely to the estimated growth rates 

associated with crude oil price, which are derived from the historical data record that includes the 

large fluctuations in oil price associated with the oil embargos. In general, the system is robust, 

with future uncertainty in crude oil and natural gas prices having only small impacts on 

technology deployment. Immediate future work includes the implementation of progressive 

hedging and Bender’s decomposition as alternative solution methods, both of which can 

decompose a stochastic program into pieces that can be solved in parallel on a compute cluster. 

Our intention is to scale to larger systems after we further develop the capability to conduct 

uncertainty analysis in a parallel computing environment. 
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