

Description and a first application of the TEMOA energy system model: <u>Tools for Energy Model Optimization and Analysis</u>

International Energy Workshop 2011 Stanford University, July 7th

Joe DeCarolis, Kevin Hunter, Sarat Sreepathi Department of Civil, Construction, and Environmental Engineering North Carolina State University

jdecarolis@ncsu.edu

The TEMOA Project

Tools for Energy Model Optimization and Analysis

Goal: Create a community-driven, technology explicit, energy economy model

Our Approach:

- Open source code (GNU Public License)
- Open source data (GNU Public License)
- No commercial software dependencies
- Input and output data managed directly with a relational DB
- Data and code stored in a web accessible electronic repository
- A version control system
- Programming environment with links to linear, mixed integer, and non-linear solvers
- Design for sensitivity and uncertainty analysis
- Utilize multi-core and compute cluster environments

Version Control with Subversion

We are using a version control system called Subversion (SVN) http://subversion.apache.org/ http://svnbook.red-bean.com/

Why? Ensure the integrity, sustainability and traceability of changes during the entire software lifecycle.

SVN enables:

- Multiple developers to work simultaneously on software components; automatic integration of non-conflicting changes
- Display the modifications to model source code
- Create software snapshots (releases) that represent well-tested and clearly defined milestones
- Public access to snapshots of the code and data

You can view our code online: <u>http://svn.temoaproject.org/trac/browser</u> Most current branch: <u>branches/energysystem-process</u>

Works on all major (Unix, Windows, MacOS) platforms

COmmon Optimization Python Repository (COOPR)

- COOPR is a collection of Python optimization-related packages that supports a diverse set of optimization capabilities for formulating and analyzing optimization models.
- Algebraic model formulation using Python Optimization Modeling Objects (Pyomo)
- Capability to formulate linear, mixed integer, and nonlinear model formulations without commercial solvers

Part of a rich Python ecosystem

Developed by the Discrete Math and Complex Systems Department at Sandia National Laboratories: https://software.sandia.gov/trac/coopr/

TEMOA Model Features

- Flexible time slicing by season and time-of-day
- Variable length model time periods
- Technology vintaging
- Separate technology loan periods and lifetimes
- Global and technology-specific discount rates
- All commodity flows balanced at the timeslice level
- Capacity determined by commodity flows at the timeslice level

Commodity Balance

 $\forall p \text{ in time period}$

 $\forall s \text{ in season}$

 $\forall d \text{ in time_of_day} \quad \forall v \text{ in vintage}$

 $\forall c \ i \text{ in commodity } a$

 $\forall t \text{ in technology}$

 $\forall c \ o \text{ in commodity}$

ProcessBalanceConstraint rule V FlowOut(p, s, d, c i, t, v, c o) \leq V FlowIn(p, s, d, c i, t, v, c_o) *Efficiency(c in, t, v, c o)

Activity and Capacity Derived from V_FlowOut

Other Key Constraints

TEMOA Objective Function

- Cost = $(\sum \sum \sum \sum$ D V Capacity[t, v] * (CostInvest[t, v] LoanAnnualize[t, v] * + CostFixed[p, t, v]) +ς
- V_Activity[p, s, d, t, v]
- * CostMarginal[p, t, v]) * df[p]

MARKAL 'Utopia' System Diagram

Diagram generated using Graphviz: <u>http://www.graphviz.org/</u>

Calibration to Utopia

MARKAL Objective value: 36,821 TEMOA Objective value: 38,502

Installed Capacity of Process Technologies:

Calibration to Utopia (continued)

Installed Capacity of Demand Technologies:

Stochastic Optimization

Decision-makers need to make choices before uncertainty is resolved \rightarrow requires an "act then learn" approach

Need to make short-term choices that hedge against future risk

 \rightarrow Sequential decision-making process that allows recourse

Stochastic optimization

- Build a scenario tree
- Assign subjective probabilities to future outcomes
- Optimize over all possibilities

Stochastic Optimization of Energy Models

Desirable features for energy models:

- Multi-stage (greater than 2)
- Multi-objective (e.g., cost, risk, emissions)
- Mixed integer (esp. endogenous tech learning)

Potential stochastic parameters:

- □ Fuel prices (esp. crude oil, natural gas, coal)
- Policy targets (e.g., CO₂ constraints, subsidies)
- Technology performance (e.g., capital cost, thermal eff)
- End-use demand projections (e.g., heating, cooling)

Simple Example of Stochastic Optimization

Suppose we have two technologies, A and B. Let x and y represent the installed capacity in Stages 1 and 2, respectively.

Stage 1 Decision Variables: χ_A, χ_B

Stage 2 Decision Variables: Y_{A,s_1} , Y_{B,s_1} , Y_{A,s_2} , Y_{B,s_2} Minimize: $c^T x + \sum_{s=1}^{N} p_s \cdot d_s^T \cdot y_s$ Subject To: Ax = b $T_{s}x + W_{s}y_{s} = h_{s}$ for s = 1, ..., N $x \ge 0$ for s = 1, ..., N $y_{s} \ge 0$

Stochastic Optimization with PySP

Python-based Stochastic Programming (PySP) is part of the COOPR package.

To perform stochastic optimization, specify a Pyomo reference model and a scenario tree

PySP offers two options:

- runef: builds and solves the extensive form of the model.
 "Curse of dimensionality" → memory problems
- runph: builds and solves using a scenario-based decomposition solver (i.e., "Progressive Hedging) based on Rockafellar and Wets (1991).

Can be implemented in a computer cluster environment; more complex scenario trees possible.

R.T. Rockafellar and R. J-B. Wets. Scenarios and policy aggregation in optimization under uncertainty. *Mathematics of Operations Research*, pages 119–147, 1991.

A Test Case of the US Electric Sector

Time periods: 2010-2040, 5-year increments 2030 and after, 2 possible CO₂ emissions levels, 3 possible natural gas prices

<u>Electric sector CO_2 emissions in 2010: 2340 MmtCO_2</u> **BAU CO_2**: 0.6% annual increase, **CO_2 Constrained**: 4.7% annual decrease [-50% to +20% change in CO₂ emissions in 2040 relative to 2010]

Natural gas prices in 2010: 4.45 \$/GJ

Low: 1.1% annual decrease, **Constant**, **High**: 8.4% annual increase [Price ranges from 3.8 to 15 \$GJ in 2040]

Technology Cost and Performance Characteristics

Annual growth in electricity demand of 0.6% based on the reference case in the *Annual Energy Outlook 2009*.

Technology ^a	Capital Cost (\$/kW)	Fixed O&M (\$/kW·yr)	Variable O&M (\$/kWh)	Efficiency (%)	Capacity Factor (%)	Average Cost (\$/kWh)	Baseload / Shoulder / Peak (B/S/P)	Capacity Constraint ^b (GW)
Pulverized	2058	27.5	0.0459	39	95	0.043	В	
Coal								
IGCC	2378	38.7	0.0292	46	90	0.045	В	
IGCC-CCS	3496	46.1	0.0444	41	90	0.066	В	
GTCC-CCS	1890	19.9	0.0294	46	90	0.086	В	
Nuclear	3318	90.0	0.0049	33	95	0.054	В	
Geothermal	1711	165	0.00	11	90	0.044	В	23
GTCC	948	11.7	0.0200	54	95	0.062	Any	
GT	634	10.5	0.0317	40	95	0.076	Any	
Hydro	2242	13.6	0.0243	34	65	0.047	Any	2
Wind-Onshore	1923	30.3	0.00	34	35	0.076	S	8000
Wind-Offshore	3851	89.5	0.00	34	40	0.14	S	800
Solar Thermal	5021	56.8	0.00	34	40	0.17	S	100
Solar PV	6038	11.7	0.00	34	30	0.25	S	

Source: EIA (US Energy Information Administration), Office of Integrated Analysis and Forecasting, US Department of Energy. *Assumptions to the Annual Energy Outlook 2009*. DOE/EIA-0554(2009); Washington DC; US Government Printing Office; 2009b.

Natural Gas Price in 2040 vs. Total Cost

Constant Nat Gas Prices, Increasing CO₂

CO₂ emissions allowed to grow 0.6% annually Natural gas prices remain constant at 4.5 \$/GJ

High Nat Gas Prices, Decreasing CO₂

Natural gas prices increase 8.3% annually from 2030-2040

Next Steps for the TEMOA Project

- Build in partial equilibrium capability
- Store I/O data in a SQLite relational database
- Build a US national database drawing data from NCSU TIMES model currently under development
- Solve stochastic version of more complex models using progressive hedging

Acknowledgments

- □ Kevin Hunter, MS student, Civil Engineering, NCSU
- Sarat Sreepathi, PhD student, Computer Science, NCSU
- Aishwarya Ravichander, MS student, Electrical Engineering, NCSU
- Daniel Mahinthakumar, junior, Apex High
- Jean-Paul Watson and Bill Hart, Sandia National Laboratory

This work would made possible through the generous support of the National Science Foundation. CAREER: *Modeling for Insights with an Open Source Energy Economy Optimization Model*. Award #1055622

National Science Foundation WHERE DISCOVERIES BEGIN

Questions?

Pyomo versus AMPL

Algebraic Formulation:

 \sum production_{t,seg} \geq dmd_{seg}, \forall seg \in segments

AMPL Formulation:

```
s.t. elc_demand{seg in segments}:
sum{t in tech[seg]} production[t] >= dmd[seg];
```

Pyomo Formulation:

model.elc_demand = Constraint(model.segments, rule=elc_demand)

```
def elc_demand (seg, model):
    "Constraint: Electricity production >= demand each segment"
    constraint_val = sum(
        model.production[t]
        for t in model.tech[ seg ]
    )
    return ( constraint_val >= model.dmd[ seg ] )
```

Use comment blocks to dynamically generate model documentation (via Sphinx). Can embed LaTeX formatting in comments.