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Driving questions

How does the world balance the costs of greenhouse gas mitigation 
in the near-term versus long-term? 

What are the anticipated economic and environmental impacts 
associated with future environmental policies and energy 
technology deployments? 

How do decision makers craft energy planning strategies that are 
robust to future uncertainties? 

How do decision makers incorporate broader environmental 
sustainability considerations — beyond simply limits to 
greenhouse gas emissions — into their strategies?
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Energy-economy optimization (EEO) models

Large uncertainties combined with a mix of technical, moral, and 
philosophical considerations preclude definitive answers to the questions 
above. 

Model-based analysis can deliver crucial insight that informs key decisions.

Energy-economy optimization (EEO) models refer to partial or general 
equilibrium models that minimize cost or maximize utility by, at least in 
part, optimizing the energy system over multiple decades

• Self-consistent framework for evaluation

• Explore how effects may propagate through a system

• Expansive system boundaries and multi-decadal timescales

What can we usefully conclude from modeling exercises 
where uncertainty is rigorously quantified? 
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High Visibility Model-Based Analyses

IPCC Special Report on Emissions Scenarios
http://www.ipcc.ch/ipccreports/sres/emission/index.htm

IEA Energy Technology Perspectives
http://www.iea.org/techno/etp/index.asp

Annual Energy Outlook
http://www.eia.gov/forecasts/aeo/er/

EPA Legislative Analyses
http://epa.gov/climatechange/economics/economicanalyses.html
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Problems with the status quo
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Four conditions for 
validatable models

According to Hodges and Dewar (1992) :

• It must be possible to observe and measure the situation being 
modeled.

• The situation being modeled must exhibit a constancy of structure in 
time.

• The situation being modeled must exhibit constancy across variations 
in conditions not specified in the model.

• It must be possible to collect ample data with which to make 
predictive tests of the model.

 Little to guide the modeler and reign in efforts that do not improve 
model performance 7
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Past projections are generally dismal

Source: Craig et al. (2002). “What Can History Teach Us? A 
Retrospective Examination of Long-Term Energy Forecasts 
for the United States.” Ann. Rev. Energy Environ. 27:83-118.

U.S. Atomic Energy Commission 
forecast from 1962

Source: Morgan G, Keith D. (2008). “Improving the way we think 
about projecting future energy use and emissions of carbon 
dioxide.” Climatic Change. 90: 189-215.



Lack of openness

Most EEO models and datasets remain closed source. Why?

• protection of intellectual property

• fear of misuse by uninformed end users

• inability to control or limit model analyses

• implicit commitment to provide support to users

• overhead associated with maintenance

• unease about subjecting code and data to public scrutiny
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Inability to verify model 
results

With a couple exceptions, 

energy-economy models are not open source

Descriptive detail provided in model documentation and peer-
reviewed journals is insufficient to reproduce a specific set of 
published results

Reproducibility of results is fundamental to science

Replication and verification of large scientific models can’t be 
achieved without source code and input data
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Uncertainty analysis is 
difficult

A common result is false precision

E.g., EPA analysis of S.2191 (Lieberman-Warner), GDP growth 

predictions to 0.01%!

Large, complex models tuned to look at a few scenarios by necessity

Scenario analysis overused

Without subjective probabilities p(X|e), scenarios of little value to 
decision makers
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Cognitive heuristics play a role and can lead to misinterpretation of 
results. 

Availability heuristic: 

Probabilities of a future event or outcome assessed on the basis of 
how easily an individual can remember or imagine examples

Anchoring and adjustment:

People start with an initial value or “anchor” and then modify their 
judgment as they consider factors relevant to the specifics  often 
insufficient adjustment

 A few highly detailed scenarios can create cognitively compelling 
storylines.

Problems with scenario analysis

Drawn from: Morgan G, Keith D. Improving the way we think about projecting future 
energy use and emissions of carbon dioxide. Climatic Change 2008; 90; 189-215. 12



Tools for Energy Model Optimization and Analysis

Temoa also means “to seek something” in the Nahuatl (Aztec) language:

Taken from: An analytical dictionary of Nahuatl
by Frances E. Karttunen
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Temoa goals and approach

Goal: Create an open source, technology explicit EEO model

Our Approach:
• Public accessible  source code and data
• No commercial software dependencies
• Data and code stored in a web accessible electronic repository
• A version control system
• Programming environment with links to linear, mixed 

integer, and non-linear solvers
• Built-in capability for sensitivity and uncertainty analysis
• Utilize multi-core and compute cluster environments
• Input and output data managed directly with a relational DB*
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Framework for Temoa
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Version Control

We are using an open source version control system (Subversion)

Why? Ensure the integrity, sustainability and traceability of changes during 
the entire software lifecycle. 

Version control enables:
• Multiple developers to work simultaneously on software components; 

automatic integration of non-conflicting changes
• Display the modifications to model source code
• Create software snapshots (releases) that represent well-tested and 

clearly defined milestones
• Public access to code and data snapshots used to produce published 

analysis  enables third party verification

You can view our code online: http://svn.temoaproject.org/trac/browser
Most current branch: branches/energysystem-process-Coopr3

Works on all major (Unix, Windows, MacOS) platforms

16

http://svn.temoaproject.org/trac/browser


Programming environment

A Common Optimization Python Repository (Coopr) is a 
collection of Python optimization-related packages that 
supports a diverse set of optimization capabilities for 
formulating and analyzing optimization models. 

• Algebraic model formulation using Python Optimization 
Modeling Objects (Pyomo)

• Capability to formulate linear, mixed integer, and non-
linear model formulations

• Includes a stochastic programming package

• Part of a rich Python ecosystem (Numpy, Scipy)

Developed by the Discrete Math and Complex Systems Department at Sandia 
National Laboratories:  https://software.sandia.gov/trac/coopr/
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Technology explicit modeling
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Capital Cost   ($M/PJ)
Fixed O&M    ($M/PJ∙yr)
Variable O&M ($/PJ)
Capacity factor 
Efficiency
Emissions coefficient (kton/PJ)

Objective function: minimize present cost of energy supply
Decision variables: activity (PJ) and capacity (PJ/yr) for each technology

‘Utopia’    (18 technologies included)
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TEMOA Model Features

A technology explicit model with perfect foresight, similar 
to the TIMES model generator.

• Flexible time slicing by season and time-of-day

• Variable length model time periods

• Technology vintaging

• Separate technology loan periods and lifetimes

• Global and technology-specific discount rates

• Capacity determined by commodity flows at the 
timeslice level
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‘Utopia’ verification exercise
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Approach to uncertainty analysis

Use the following techniques in series:

Sensitivity analysis and Monte Carlo simulation 

→ Determine key sensitivities

Multi-stage stochastic optimization

→ Develop a hedging strategy

Explore near-optimal, feasible region 

(Modeling-to-Generate-Alternatives)

→ Test robustness of hedging strategy

22
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Stochastic Optimization

Decision-makers need to make choices before uncertainty is
resolved → requires an “act then learn” approach

Need to make short-term choices that hedge against future risk

→ Sequential decision-making process that allows recourse

Stochastic optimization
• Build a scenario tree
• Assign probabilities to future outcomes
• Optimize over all possibilities
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Simple example of stochastic optimization

Suppose we have two technologies, A and B. Let x and y represent 
the installed capacity in Stages 1 and 2, respectively.

t1 t2

s1

s2

Stage 1 Decision Variables:

Stage 2 Decision Variables:
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Stochastic optimization with PySP

Python-based Stochastic Programming (PySP) is part of the Coopr
package.

To perform stochastic optimization, specify a Pyomo reference model 
and a scenario tree

PySP offers two options:
1. runef: builds and solves the extensive form of the model. 

“Curse of dimensionality” → memory problems
2. runph: builds and solves using a scenario-based decomposition 

solver (i.e., “Progressive Hedging) based on Rockafellar and Wets 
(1991).
Can be implemented in a compute cluster environment; more 
complex scenario trees possible.

R.T. Rockafellar and R. J-B. Wets. Scenarios and policy aggregation in optimization under 
uncertainty. Mathematics of Operations Research, pages 119–147, 1991.
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Progressive hedging (runph)
• Decomposes a stochastic program by scenarios (i.e., pathways 

through the event tree) instead of time stages. 

• Calculates scenario-specific solutions and proceeds in an iterative 
manner by updating the scenario-specific solutions for a modified 
objective.

• Combines them to form a unified solution, and repeats the process 
until convergence is reached . 

• The scenario-specific solutions required at each iteration can be 
evaluated in parallel on a compute cluster.

→ Processor 1

→ Processor 2

→ Processor 3

→ Processor 4

→ Processor 5

→ Processor 6

26

NCSU Cluster “Cygnus”:
• 11 nodes, each with 2 AMD quad-

core Opteron processors (2.0 GHz 
with 512 KB Cache/core)

• 1.8 TB of storage
• 176 GB memory
• OpenSuse 10.3 (Linux)
• FLOPS = 704 Gigaflops 
• 1 GigE interconnect



Stochastic application of ‘Utopia’

A proof-of-concept application

9 branches per node / 2 uncertain time stages  81 scenarios

Decadal growth rates used in stochastic utopia:
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Scenario E01 E21 RH RL TX

Cost (L) / Demand (H) 1.2 -0.80 0.48 0.48 0.48

Cost (L) / Demand (M) 1.2 -0.80 0.11 0.11 0.11

Cost (L) / Demand (L) 1.2 -0.80 0.05 0.05 0.05

Cost (M) / Demand (H) 1.0 -0.30 0.48 0.48 0.48

Cost (M) / Demand (M) 1.0 -0.30 0.11 0.11 0.11

Cost (M) / Demand (L) 1.0 -0.30 0.05 0.05 0.05

Cost (H) / Demand (H) 0.8 0.20 0.48 0.48 0.48

Cost (H) / Demand (M) 0.8 0.20 0.11 0.11 0.11

Cost (H) / Demand (L) 0.8 0.20 0.05 0.05 0.05



Results from stochastic ‘utopia’
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‘Utopia’ scenario-specific results
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A slightly more complicated stochastic application
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‘Temoa Island’
(27 technologies included)
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3 stochastic
parameters:

• End-use 
demand

• Natural gas 
price

• Crude oil 
price

Stochastics

5-year rolling average

http://www.eia.gov/totalenergy/data/annual/
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Historical data drawn from the U.S. EIA Annual Energy Review 2011
Source: http://www.eia.gov/totalenergy/data/annual/
(Demand proxy is U.S. total residential energy demand)

• Using the rolling average data, calculate the growth rate associated 
with each stochastic parameter from one period to the next

• Calculate conditional probabilities and associated growth rates based 
on examining results from each pair of successive periods

Probabilities:

A Simple Markov Chain
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DDD

DDU 100%

DUD

DUU 67% 33%

UDD 78% 11% 11%

UDU 33% 67%

UUD 25% 25% 50%

UUU 6% 6% 6% 82%

D   D U
o    o p
w   w
n n

Demand

NG Price

Oil Price

FR
O

M

TO
Example:

http://www.eia.gov/totalenergy/data/annual/


Forming the Event Tree
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P(UUU)

P(DDU|UUU)

P(DUU|UUU)

P(UUD|UUU)

P(UUU|UUU)

…

5-year model time periods
Non-anticipative stages: 2010 - 2020
Uncertainty is resolved: 2025 - 2045
Resulted in a total of 309 scenarios



Solve statistics

Solved the extensive form using runef

Raw LP:
Variables: 3,907,626
Constraints: 5,384,195

Presolved LP:
597,421 constraints
196,274 variables

It took CPLEX 133,772.65 seconds (38 hours) to solve.
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Total System Cost versus Natural Gas Price
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Capacity Results: Lowest Cost Scenario
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Modeling to Generate Alternatives
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Still haven’t dealt with structural uncertainty in the model

Need a method to explore an optimization model’s feasible 
region → “Modeling to Generate Alternatives”†

MGA generates alternative solutions that are maximally different 
in decision space but perform well with respect to modeled 
objectives

The resultant MGA solutions provide modelers and decision-
makers with a set of alternatives for further evaluation

†Brill (1979), Brill et al. (1982), Brill et al. (1990)



How Optimal is the “Optimal” Solution?
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Consider an optimization 
model that only includes 
Objective 1 and leaves 
Objective 2 unmodeled.
The true optimum is 
within the 
feasible, suboptimal 
region of the model’s 
solution space.

Viable alterative solutions 
exist within the model’s 
feasible region.

Example adopted from Brill et al. (1990).

Objective 1

O
b
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ct
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e 

2

Non-inferior frontier



Hop-Skip-Jump (HSJ) MGA
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Steps:

1. Obtain an initial optimal solution by any method

2. Add a user-specified amount of slack to the value of the 
objective function

3. Encode the adjusted objection function value as an 
additional upper bound constraint

4. Formulate a new objective function that minimizes the 
decision variables that appeared in the previous solutions

5. Iterate the re-formulated optimization

6. Terminate the MGA procedure when no significant changes 
to decision variables are observed in the solutions

Brill et al. (1982)



HSJ MGA
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Mathematical formulation

X

jTxf

xp

jj

Kk
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
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

x         

    )(    s.t.

   min

where:

K represents the set of indices of decision 
variables with nonzero values in the 
previous solutions

is the jth objective function

Tj is the target specified for the jth modeled 
objective

X is the set of feasible solution vectors

 xf j



Conclusions

Most EEO models and model-based analyses are opaque to 
external parties

The TEMOA project represents a new, transparent modeling 
framework designed for rigorous uncertainty analysis

• Archival copies of source code and data publicly available for 
replication

• Uncertainty analysis enabled by a high performance computing 
environment

Combine sensitivity analysis, stochastic optimization, and 
modeling-to-generate-alternatives to identify robust hedging 
strategies for greenhouse gas mitigation
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Temoa Next Steps

Development

• Develop more refined approach to generating stochastic data and 
branch probabilities

• Find ways to prune the event tree

• Improve ways to analyze outputs from stochastic runs

• Implement MGA in Temoa framework

• Develop a relational database schema for I/O data

Application

• Adapt single-region US TIMES model to Temoa

• Begin addressing the driving questions listed on Slide 3

http://temoaproject.org
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