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Talk Outline

Provide very brief introduction to Tools for Energy Model
Optimization and Analysis (Temoa), an open source energy
system model.

Describe recent modeling work that quantifies the range of
US greenhouse gas emissions through 2040 in the absence
of new federal climate or energy policy.

Present ideas to create a community modeling effort.
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Brief Overview of Temoa
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Problems with the status quo
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Tools for Energy Model Optimization
and Analysis (Temoa)

Temoa is a bottom up, technology explicit model with
perfect foresight, similar to the MARKAL/TIMES model
generators.

Goals

1. Repeatable analysis
 Data and code stored in a public web repository (github)
 Open source software stack

2. Rigorous treatment of uncertainty
 Designed to utilize high performance computing resources
* Several methods implemented to address an array of questions
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Energy System Optimization Capital Cost (SM/P)
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Temoa Capabilities

Current

* Visualization of energy system map

* |Input/output data stored in a relational database
e Optional Excel output produced from database

* Online, cloud-based interface available for testing

Project website: http://www.temoaproject.org
Source code: https://github.com/TemoaProject
Cloud-based interface: http://model.temoacloud.com



http://www.temoaproject.org/
https://github.com/TemoaProject/temoa
http://model.temoacloud.com/
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Uncertainty Analysis

Useful model-based insight should account for uncertainty.
The approach depends on the question at hand.

Method of Morris (SALIib)

Perform a random walk in input parameter space; characterize impact of
each parameter on output(s) of interest
Monte Carlo simulation
Select ranges or distributions for uncertain input parameters, make random
draws, iterate the model, examine patterns in output
Modeling-to-Generate Alternatives
Modify the model structure to find feasible, near optimal solutions that
are maximally different in decision space
Stochastic Optimization (Pyomo)

Devise a scenario tree that accounts for potential future outcomes, assign
probabilities, and optimize over the whole tree; produces a near-term
hedging strategy 8
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US Energy-Related Greenhouse Gas
Emissions in the Absence of Federal
Climate Policy
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Evaluating the US Mid-Century Strategy for Deep
Decarbonization amidst early century uncertainty
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The recent change in US presidential administrations has introduced significant uncertainty about both domestic and inter-
national policy support for continued reductions in GHG emissions. This brief analysis estimates the potential climate ramifica-
tions of changing US leadership, contrasting the Mid-Century Strategy for Deep Decarbonization (MCS) released under the
Obama Administration, with campaign statements, early executive actions, and prevailing market conditions to estimate potential
emission pathways under the Trump Administration. The analysis highlights areas where GHG reductions are less robust to
changing policy conditions, and offers brief recommendations for addressing emissions in the interim. It specifically finds that
continued reductions in the electricity sector are less vulnerable to changes in federal policy than those in the built environment
and land use sectors. Given the long-lived nature of investments in these latter two sectors, however, opportunities for near-term
climate action by willing cities, states, private landowners, and non-profit organizations warrant renewed attention in this time of
climate uncertainty.

Key policy insights

B The recent US presidential election has already impacted mitigation goals and practices, injecting considerable uncertainty
into domestic and international efforts to address climate change.

I A strategic assessment issued in the final days of the Obama Administration for how to reach long-term climate mitigation
objectives provides a baseline from which to gauge potential changes under the Trump Administration.

B Though market trends may continue to foster emission declines in the energy sector, emission reductions in the land use
sector and the built environment are subject to considerable uncertainty.

B Regardless of actions to scale back climate mitigation efforts, US emissions are likely to be flat in the coming years. Assuming that
emissions remain constant under President Trump and that reductions resume afterwards to meet the Obama Administration
mid-century targets in 2050, this near-term pause in reductions yields a difference in total emissions equivalentto 0.3—-0.6 years of
additional global greenhouse gas emissions, depending on the number of terms served by a Trump Administration.

What might US
GHG emissions
trajectories look
like in the
absence of new
federal energy or
climate policy?

10
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Objectives of our recent analysis

« Examine future US emissions pathways in the absence
of new federal energy or climate policy

 Introspect our US Temoa model to identify the
parameters that have a significant effect on national
GHG emissions

« Explore parameter combinations that produce high or
low emissions pathways, relative to our baseline

11
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Input Database Description

« US as a single region
* Time horizon: 2015-2040, with 5 year time periods
« 12 time slices: 3 seasons, 4 times-of-day

« Key data sources: EPA 2016 MARKAL, EIA Annual
Energy Outlook

« Assume exogenous fuel price trajectories from the
Annual Energy Outlook

« Explicit technology representation in the electric,
transport, residential, and commercial sectors; industrial
sector represented with fuel share constraints

« QOver 550 technologies represented

12
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Analysis Framework

Which parameters matter most?
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Method of Morris

X554
Uncertain Parameters:
* k=2 in this example
* k=41 in analysis

Number of Trajectories:
 T=2in this example
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Method of Morris

« Sensitivity of 41 different input parameter groups, with £20% range on
each

»  We test sensitivity of cumulative GHG emissions to each parameter
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Monte Carlo Simulation

We look into three different future cases, each consisting of 1000
runs:

« Stable World: assumes all parameters change within £20% of
their baseline values

* Uncertain Fuels: assumes all parameters change within £20%
of their baseline values except for natural gas and oil prices
which vary within £80% of their baseline values

* Uncertain World: assumes all parameters change within
+40% of their baseline values, except for natural gas and oil
prices, which vary within £80% of their baseline values

Key inputs follow uniform distribution. Outputs provide a sense of
potential future outcomes, but should not be interpreted
probabilistically

16
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Results: Cumulative GHG Emissions
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Results: CO, Pathways
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k-Means Clustering

* The k-means algorithm partitions the data set by
creating groups or clusters with similar features.

« Each cluster consists of centroid values
representing the 10 uncertain input parameters
plus cumulative GHG emissions.

* The algorithm minimizes the Euclidean distance
between the centroids of each cluster.

* We separate the data into ten clusters.

20
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Results: K-means clustering
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Clusters don’t tell the whole story
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Conclusions

« With limited input variability, substitution between natural gas and coal
in the electric sector represents a key tradeoff

« Uncertainty tends to skew the US energy system towards emissions
below our baseline case. There are more ways to decrease emissions
with renewables, natural gas, and electric vehicles than increase with
coal.

* Projected GHG emissions in 2040 range from +10% to -23% of our
baseline estimate.

« The cumulative CO.,e difference between the highest and lowest
emissions scenario from 2020 to 2040 is nearly 6.6 times the 2015
emissions level.

« Parameter uncertainty can drive a significant emissions range, and
much of this uncertainty is obscured by conventional scenario analysis
with energy system models.

24
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Current

* North Carolina electricity futures; includes careful examination of break-even
investment costs and application of stochastic optimization

» Electricity planning under the risk of conflict in South Sudan; includes
sensitivity analysis and stochastic optimization to examine potential hedging

strategies

« Developing a regional US database for future analysis, including EMF34
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Ideas for a Community Modeling Effort

27
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Problems solved?

vamict}féhping to read this work?
_ WH'S gojng tofreplicatgand extend thisiwork?

+ model verify model
_ complexity results
Increasing \_ )
availability of —> + —>
data '
Lack of Uncertainty

How does this modglingavolk make ézglfllﬂfgf*en e
Wokog fgal world?
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We Need a More Cohesive Community

* Much more focus on open source efforts, but we're still
largely on our own islands

* Everyone creates a mental model based on experience
with their own energy models.

« Hard to compare models given differences in model
structure and data — so debates persist

« Jacobson versus Clack debate is a good example -- how
do we move beyond critique?

What if we create a community platform where we can test
hypotheses by starting from a familiar reference point?

29
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How about a community energy outlook
for the US?

 Enlist folks to help us improve our regional US Temoa
database

« Crowdsource ideas for future analysis

« Archive code and data in a common repository (e.g., GitHub)
« Create new branches to test formulations or data updates

« Use snapshots of code and data to produce new analysis

» Co-authorship based on contributions

30
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Revised Approach

Revision Control System

Main branch

Update data
@ Outlook 2017 S ® Outlook 2019
@)
_ gdoddel _’ O Scenario data /
foature assumptions
: @) @)
@ Outlook 2018 @' Outlook 2020

* Each “dot” represents a commit

* Provides data and code provenance

e Test hypotheses holding other factors
constant 31
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Logistical challenges

* Funding required for web-based logistical support as well as
graduate students or staff to perform the work

— Funding sources not obvious; perhaps NSF Research
Coordination Networks? Private Foundations?
Environmental NGOs?

* For the broader community, what would make participation
worthwhile?

32
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Questions or Comments?

33





