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Talk Outline

Provide very brief introduction to Tools for Energy Model 
Optimization and Analysis (Temoa), an open source energy 
system model.

Describe recent modeling work that quantifies the range of 
US greenhouse gas emissions through 2040 in the absence 
of new federal climate or energy policy.

Present ideas to create a community modeling effort.
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Brief Overview of Temoa
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Problems with the status quo
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Tools for Energy Model Optimization 
and Analysis (Temoa)

Temoa is a bottom up, technology explicit model with 
perfect foresight, similar to the MARKAL/TIMES model 
generators.

Goals

1. Repeatable analysis
• Data and code stored in a public web repository (github)
• Open source software stack

2. Rigorous treatment of uncertainty
• Designed to utilize high performance computing resources
• Several methods implemented to address an array of questions 5



Energy System Optimization
Models
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Capital Cost   ($M/PJ)
Fixed O&M    ($M/PJ·yr)
Variable O&M ($/PJ)
Capacity factor 
Efficiency
Emissions coefficient (kton/PJ)

Objective function: minimize present cost of energy supply
Decision variables: activity (PJ) and capacity (PJ/yr) for each technology



Temoa Capabilities

Current
• Visualization of energy system map
• Input/output data stored in a relational database
• Optional Excel output produced from database
• Online, cloud-based interface available for testing

Project website: http://www.temoaproject.org
Source code: https://github.com/TemoaProject
Cloud-based interface: http://model.temoacloud.com
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Uncertainty Analysis
Useful model-based insight should account for uncertainty. 
The approach depends on the question at hand.

• Method of Morris (SALib)
Perform a random walk in input parameter space; characterize impact of 
each parameter on output(s) of interest

• Monte Carlo simulation
Select ranges or distributions for uncertain input parameters, make random 
draws, iterate the model, examine patterns in output

• Modeling-to-Generate Alternatives
Modify the model structure to find feasible, near optimal solutions that 
are maximally different in decision space

• Stochastic Optimization (Pyomo)
Devise a scenario tree that accounts for potential future outcomes, assign 
probabilities, and optimize over the whole tree; produces a near-term 
hedging strategy 8



US Energy-Related Greenhouse Gas 
Emissions in the Absence of Federal 

Climate Policy 
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What might US 
GHG emissions 
trajectories look 
like in the 
absence of new 
federal energy or 
climate policy?

B policy analysis

Evaluating the US Mid-Century Strategy for Deep
Decarbonization amidst early century uncertainty
CHRISTOPHER S. GALIK 1*, JOSEPH F. DECAROLIS2, HARRISON FELL3

1 Department of Public Administration, North Carolina State University, Raleigh, NC, USA
2 Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
3 Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC, USA

The recent change in US presidential administrations has introduced significant uncertainty about both domestic and inter-
national policy support for continued reductions in GHG emissions. This brief analysis estimates the potential climate ramifica-
tions of changing US leadership, contrasting the Mid-Century Strategy for Deep Decarbonization (MCS) released under the
Obama Administration, with campaign statements, early executive actions, and prevailing market conditions to estimate potential
emission pathways under the Trump Administration. The analysis highlights areas where GHG reductions are less robust to
changing policy conditions, and offers brief recommendations for addressing emissions in the interim. It specifically finds that
continued reductions in the electricity sector are less vulnerable to changes in federal policy than those in the built environment
and land use sectors. Given the long-lived nature of investments in these latter two sectors, however, opportunities for near-term
climate action by willing cities, states, private landowners, and non-profit organizations warrant renewed attention in this time of
climate uncertainty.

Key policy insights

B The recent US presidential election has already impacted mitigation goals and practices, injecting considerable uncertainty
into domestic and international efforts to address climate change.

B A strategic assessment issued in the final days of the Obama Administration for how to reach long-term climate mitigation
objectives provides a baseline from which to gauge potential changes under the Trump Administration.

B Though market trends may continue to foster emission declines in the energy sector, emission reductions in the land use
sector and the built environment are subject to considerable uncertainty.

B Regardlessof actions to scale back climate mitigation efforts, US emissions are likely to beflat in the comingyears. Assuming that
emissions remain constant under President Trump and that reductions resume afterwards to meet the Obama Administration
mid-century targets in 2050, this near-term pause in reductionsyields a difference in total emissions equivalent to 0.3–0.6 years of
additional global greenhouse gas emissions, depending on the number of terms served by a Trump Administration.

Keywords: climate change mitigation; climate change policies; energy markets; land use, land use change and forestry (LULUCF);
transportation sector

There is ample evidence that deep cuts in GHG emissions are necessary to avert the most severe impacts
from global climate change (Edenhofer et al., 2014; U.S. Department of State, 2015). Given the change

B *Corresponding author. E-mail: csgalik@ncsu.edu

https://doi.org/10.1080/14693062.2017.1340257

# 2017 Informa UK Limited, trading as Taylor & Francis Group
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Objectives of our recent analysis

• Examine future US emissions pathways in the absence 
of new federal energy or climate policy

• Introspect our US Temoa model to identify the 
parameters that have a significant effect on national 
GHG emissions

• Explore parameter combinations that produce high or 
low emissions pathways, relative to our baseline
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Input Database Description
• US as a single region

• Time horizon: 2015-2040, with 5 year time periods

• 12 time slices: 3 seasons, 4 times-of-day

• Key data sources: EPA 2016 MARKAL, EIA Annual 
Energy Outlook

• Assume exogenous fuel price trajectories from the 
Annual Energy Outlook

• Explicit technology representation in the electric, 
transport, residential, and commercial sectors; industrial 
sector represented with fuel share constraints

• Over 550 technologies represented
12



Analysis Framework

13

Temoa

Method of Morris

Monte Carlo
Simulation

k-Means
Clustering

Which parameters matter most?

Which parameter combos 
produce low emissions?

What is the resultant range in 
GHG emissions?



Method of Morris
X2

X1
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EE1

EE2

EE1

EE2

Uncertain Parameters:
• k=2 in this example
• k=41 in analysis

Number of Trajectories:
• T=2 in this example
• T=25 in analysis
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Method of Morris
• Sensitivity of 41 different input parameter groups, with ±20% range on 

each
• We test sensitivity of cumulative GHG emissions to each parameter
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■ ANALYSIS FRAMEWORK
Our methodological approach shares common elements with
previous work. For example, we utilize large scale scenario
generation and cluster analysis similar to the Robust Decision
Making (RDM) approach;36,37 however, we are not attempting
to identify a policy strategy. In addition, recent studies have used
ESOMs to generate a large ensemble of near optimal scenarios
to derive policy relevant insights, but such work has focused on
European applications.38−40 Below we describe each element of
our framework in turn.
Method of Morris. Following work by Usher,41 we utilize a

global sensitivity method called Method of Morris20,21 to
identify the model inputs that produce the largest effect on
cumulative GHG emissions over the model time horizon. The
method produces a reliable sensitivity measure with a minimum
number of runs and can handle a large number of uncertain
parameters, making it suitable for use with data-intensive
ESOMs.41 We consider price variation in 6 different fuels and 35
technology-specific capital costs. (See the Supporting Informa-
tion for additional details on the Method of Morris formulation
and problem setup used in this analysis.) For simplicity, each
parameter is varied within a range representing ±20% of its
baseline value rather than trying to identify specific ranges for
each parameter separately, which are subject to considerable
future uncertainty.
Monte Carlo Simulation.Next, we perform a Monte Carlo

simulation where we consider variation in the ten most sensitive
parameters selected from the Method of Morris analysis. Our
objective is to quantify how variation in the ten most sensitive
technoeconomic parameters can affect the resultant range in
GHG emissions. Given the high uncertainty associated with
these future parameter values, we do not attempt to quantify
different ranges, probability distributions, or correlations
between parameters. Rather, a uniform distribution and range
is assumed for each parameter, similar to other studies.40,42−44

As a result, the full set of model results indicates the range of
future emissions pathways and suggests possible outcomes but
should not be interpreted probabilistically. When investigating
low emissions outcomes relying on specific combinations of

realized parameter values, we consider the plausibility of those
parameter combinations ex post. The required number of model
runs for the Monte Carlo simulation is assumed independent of
the number of uncertain inputs;45 1000 runs are conducted
within the simulation. To minimize the computational time, we
create an embarrassingly parallel46 implementation of the
framework. The model runs are parallelized using the “joblib”
Python library.47 We run the model using a workstation
containing two Multi-Core Intel Xeon E5-2600 series
processors, representing a total of 12 compute cores.

k-Means Clustering. Rather than examine the raw set of
1000 model runs, we employ k-means clustering to examine a
limited number of representative points. The k-means algorithm
partitions the data set by creating groups or clusters with similar
features. The algorithm minimizes the Euclidean distance
between the centroids of each cluster, where each cluster
consists of centroid values representing the 10 uncertain input
parameters plus cumulative emissions (see the Supporting
Information for more details). We separate the data into ten
clusters, which provide enough points to identify relationships
between input values and the resultant level of cumulative CO2
emissions. Larger numbers of clusters were tested, but the
configuration of centroids did not yield additional insights.
The k-means clustering algorithm is a well-established

methodology applied to separate data sets into homogeneous
groups of observations. The method was first developed by
Lloyd48 and has been widely used as a nonhierarchical clustering
approach. Other methods such as principal component
analysis,49 hierarchical and other nonhierarchical clustering
methods,50,51 and supervised and unsupervised learning
algorithms51 could also be used for our purpose. However, in
this work we make use of the k-means method for clustering due
to its simplicity, efficiency, and successful application in several
areas of the literature.52

Uncertainty Cases. We develop three different cases to
represent different levels of future uncertainty and repeat the
Monte Carlo simulation, consisting of 1000model runs, for each
case. We refer to the first case as ‘Stable World’, which denotes a
relatively stable future in which the ten most sensitive

Figure 1.Method of Morris results indicating the ten input parameters that produce the largest effect on cumulative GHG emissions (2015−2040),
ranked from largest to smallest effect. Parameters labeled “price” represent fuel prices, while all others represent capital costs. The horizontal axis
indicates the magnitude of the expected change in cumulative GHG emissions relative to the baseline value. Each input parameter is tested at 25
distinct values over a range representing ±20% of its baseline value. The length of the bar indicates the average effect, while the error bars indicate the
95% confidence intervals.

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.8b01586
Environ. Sci. Technol. 2018, 52, 9595−9604
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Monte Carlo Simulation
We look into three different future cases, each consisting of 1000 
runs:
• Stable World: assumes all parameters change within ±20% of 

their baseline values
• Uncertain Fuels: assumes all parameters change within ±20% 

of their baseline values except for natural gas and oil prices 
which vary within ±80% of their baseline values

• Uncertain World: assumes all parameters change within 
±40% of their baseline values, except for natural gas and oil 
prices, which vary within ±80% of their baseline values

Key inputs follow uniform distribution. Outputs provide a sense of 
potential future outcomes, but should not be interpreted 
probabilistically

16



Results: Cumulative GHG Emissions
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Results: CO2 Pathways
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cumulative GHG emissions is less than 0.25% of the base case
cumulative emissions. In general, the small relative changes in
cumulative emissions reflect inertia in the energy system: a
change in any single parameter takes time to reach its full effect
on technology deployment and has a limited effect across the
system.
We repeated the Method of Morris analysis with a ±40%

input parameter range and found that it generates the same top
ten parameters as shown in Figure 1; however, oil price rises to
the second rank, while the relative order of the other inputs stays
the same.
Baseline GHG Emissions under Future Uncertainty.

The ten parameters with highest sensitivity (Figure 1) are
selected for inclusion in a suite of Monte Carlo simulations that
indicate how US energy-related GHG emissions may change
under different future assumptions. The distribution of
cumulative GHG emissions from the three cases is shown in
Figure 2 where kernel density estimation50 is employed to
smooth out the raw histogram results.
In the Stable World case, the distribution of cumulative GHG

emissions is clustered around the baseline scenario (169
GtCO2e), with a range extending to a minimum emissions
level of 153 GtCO2e. By comparison, both the Uncertain Fuels
and Uncertain World cases exhibit a wider range in cumulative
GHG emissions than Stable Word, but both are skewed toward
lower emissions. Thus, allowing a wider range in fuel prices

(±80%) flattens the distribution of cumulative emissions and
increases the proportion of scenarios with emissions lower than
the baseline. Moving from Uncertain Fuels to Uncertain World
increases the highest emissions scenario by 1% and decreases the
lowest emissions scenario by 3.2% relative to the cumulative
emissions level in the baseline scenario. Overall, Figure 2
indicates that wider input ranges related to fuel costs and
technology investment costs increase the proportion of
emissions scenarios below the baseline. For reference, our
baseline cumulative GHG emissions are 6.2% higher than the
AEO reference case without the Clean Power Plan.9 Part of this
discrepancy is due to our consideration of CO2-equivalent
emissions from methane leakage during natural gas production,
processing, and transport, which AEO does not report. If only
CO2 emissions are compared, the difference is 3.2%. Across all
modeled scenarios, methane leakage ranges from 1.6% to 4.1%
of total CO2e emissions.
TheCO2 emissions trajectories associated with the three cases

are presented in Figure 3 and compared with the energy-related
CO2 emissions from the Mid-Century Strategy (MCS) for deep
decarbonization.8 The MCS outlines a path for the US to meet
its commitments under the Paris Accord and ultimately achieve
an 80% reduction below 2005 emissions levels by 2050.
Figure 3 indicates that it may be possible to meet the US 2025

commitments in the absence of federal policy; however, market

Figure 4.Cumulative GHG emissions versus the ratio of natural gas to coal prices. Each subplot represents the full set of 1000 runs associated with each
case: (a) Stable World, (b) Uncertain Fuels, and (c) Uncertain World. In each case, the red circle represents the baseline projection. Each point in the
Stable World case is colored by the capital cost of combined-cycle natural gas turbines, while points in the other two cases are colored by the oil price.
These factors help explain the variability in cumulative GHG emissions at a given fuel price ratio. The color bar indicates the scalar value used to adjust
the input parameter value in the Monte Carlo simulation.

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.8b01586
Environ. Sci. Technol. 2018, 52, 9595−9604

9599
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k-Means Clustering
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• The k-means algorithm partitions the data set by 
creating groups or clusters with similar features. 

• Each cluster consists of centroid values 
representing the 10 uncertain input parameters 
plus cumulative GHG emissions. 

• The algorithm minimizes the Euclidean distance 
between the centroids of each cluster.

• We separate the data into ten clusters. 



Results: K-means clustering
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Highest and lowest 
emissions clusters



Clusters don’t tell the whole story

23
capacity between the baseline and two scenarios drawn from the
set of 50 lowest emissions scenarios.
The electricity capacity results shown in Figure 7 illustrate the

potential diversity in individual scenario results. “S2” shows a
much higher penetration of wind and solar PV compared to
either the baseline or “S1”. The “S2” scenario achieves among
the lowest cumulative greenhouse gas emissions (140 GtCO2e)
with high fossil fuel prices and high combined-cycle turbine cost
coupled with capital costs for wind, solar PV, and electric
vehicles that are more than 30% below their baseline value.
Policy Insights and Caveats. Energy system models are

often used to examine a limited number of scenarios that reflect
carefully considered states of the world; however, the results
often ignore high levels of future uncertainty and can thus be
misleading. There is a critical need to introspect energy models
to quantify key assumptions, sensitivities, and uncertainties. Real
world uncertainty includes a broader array of considerations,
such as the prevailing political climate, public acceptance of
alternative energy technology, and potential policy actions at the
state or regional level that are not captured here. Nonetheless, a
careful examination focused on technology cost and perform-
ance in a systems context can yield useful insight for policy
makers.
Our analysis focuses on technoeconomic uncertainty related

to fuel prices and technology-specific capital costs, thus
providing an indication of how changes in costs can produce
different base case outcomes. We do not attempt to model
different ranges or correlations among uncertain inputs, which
could affect the shape of the emissions distributions shown in
Figure 2. Even with a more sophisticated representation of input
data, we would not expect a change in the basic insight that
technoeconomic uncertainty skews cumulative emissions
toward values below the baseline. Our approach here is to
conduct the sensitivity analysis with a simplified representation
of input data and then examine key relationships ex post for
plausibility. This approach leaves open the possibility for new
insights. For example, the lowest emissions scenarios rely on low
natural gas prices and high oil and coal prices, which led us to

consider the degree of price decoupling between these
resources. While our assumption of decoupled prices is
plausible, future work could test price correlations and their
effect on emissions.
Overall, the model results indicate that market forces

operating in the absence of new federal climate or energy policy
will tend to produce emissions trajectories that remain relatively
flat or produce modest reductions: the 2040 emissions range
from −23% to +10% of the baseline estimate. By comparison,
the 2040 emissions across the AEO 2017 scenarios (without the
Clean Power Plan) range from +4% to −5% of the AEO
reference scenario.9 Thus, the broader consideration of input
uncertainty in this analysis produces a wider range in future
emissions, but the range skews toward lower emissions. Our
results show consistency with results from Barron et al.,58 where
most of the scenarios show relatively flat emissions trajectories
in comparison with historical levels. By contrast, Clark et al.14

and Zhu et al.59 project higher emissions over the next several
decades due to greater reliance on fossil fuels. In our analysis,
there are more parameter value combinations that decrease
emissions through the deployment of natural gas and renewables
than increase emissions through the increased deployment of
coal. For perspective, the cumulative difference between the
highest and lowest emissions scenario from 2020 to 2025 is
approximately 1.8 times the 2015 emissions level,29 and the
same cumulative difference from 2020 to 2040 grows to nearly
6.6 times the 2015 emissions level.29 These variations in
emissions are significant and illustrate the importance of
considering technoeconomic uncertainty in future no-policy
scenarios. Applying sensitivity techniques that extend beyond
conventional scenario analysis can broaden future energy and
emissions pathways, and could help inform subsequent policy
efforts.
If technology innovation remains low and technology costs

track close to their baseline values, then the key trade-off will be
natural gas versus coal utilization in the electric sector. The
model results suggest that the continuation of low natural gas
prices will lead to additional coal plant retirements, similar to

Figure 7.Comparison of electric sector capacities in three scenarios: the baseline scenario and two scenarios drawn from the set of 50 lowest emissions
scenarios. “S1” represents a low emissions scenario drawn fromUncertainWorld Cluster 2 that is consistent with the centroid values shown in Figure 6.
“S2” represents a low emissions scenario drawn from Uncertain World Cluster 1 that shows a result significantly different from the associated centroid
values.

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.8b01586
Environ. Sci. Technol. 2018, 52, 9595−9604
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Conclusions
• With limited input variability, substitution between natural gas and coal 

in the electric sector represents a key tradeoff

• Uncertainty tends to skew the US energy system towards emissions 
below our baseline case. There are more ways to decrease emissions 
with renewables, natural gas, and electric vehicles than increase with 
coal. 

• Projected GHG emissions in 2040 range from +10% to -23% of our 
baseline estimate. 

• The cumulative CO2e difference between the highest and lowest 
emissions scenario from 2020 to 2040 is nearly 6.6 times the 2015 
emissions level. 

• Parameter uncertainty can drive a significant emissions range, and 
much of this uncertainty is obscured by conventional scenario analysis 
with energy system models.
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Current
• North Carolina electricity futures; includes careful examination of break-even 

investment costs and application of stochastic optimization
• Electricity planning under the risk of conflict in South Sudan; includes 

sensitivity analysis and stochastic optimization to examine potential hedging 
strategies

• Developing a regional US database for future analysis, including EMF34
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Ideas for a Community Modeling Effort
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Problems solved?
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Inability to 
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results
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difficult

Who’s going to read this work?
Who’s going to replicate and extend this work?

How does this modeling work make a difference 
in the real world?

Maybe, but…



We Need a More Cohesive Community
• Much more focus on open source efforts, but we’re still 

largely on our own islands
• Everyone creates a mental model based on experience 

with their own energy models.
• Hard to compare models given differences in model 

structure and data – so debates persist
• Jacobson versus Clack debate is a good example -- how 

do we move beyond critique?

What if we create a community platform where we can test 
hypotheses by starting from a familiar reference point?

29



How about a community energy outlook 
for the US?

• Enlist folks to help us improve our regional US Temoa
database

• Crowdsource ideas for future analysis
• Archive code and data in a common repository (e.g., GitHub)
• Create new branches to test formulations or data updates
• Use snapshots of code and data to produce new analysis
• Co-authorship based on contributions

30



Revised Approach
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Outlook 2017

Outlook 2018

?

Outlook 2019

Outlook 2020

Revision Control System

Main branch
Update data

Add
model
feature

Scenario data /
assumptions

• Each “dot” represents a commit
• Provides data and code provenance
• Test hypotheses holding other factors 

constant



Logistical challenges

• Funding required for web-based logistical support as well as 
graduate students or staff to perform the work
– Funding sources not obvious; perhaps NSF Research 

Coordination Networks? Private Foundations? 
Environmental NGOs?

• For the broader community, what would make participation 
worthwhile? 
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Questions or Comments?
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